Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Alexandra Goriounova, Peter Held,* Petra Becker and Ladislav Bohatý

Institut für Kristallographie, Universität zu Köln, Zülpicher Straße 49b, D-50674 Köln, Germany

Correspondence e-mail: peter.held@uni-koeln.de

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(O-B) = 0.005 \text{ Å}$ R factor = 0.036 wR factor = 0.082 Data-to-parameter ratio = 33.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Monoclinic modification of polymorphic TbB₃O₆

Terbium triborate, TbB₃O₆, is confirmed to adopt at least two different structural modifications. Its monoclinic modification represents the terminal member of the isostructural series of REB_3O_6 with RE = La-Tb, and crystallizes in space group I2/a. The structure consists of chains of $[B_6O_{12}]_n^{6-}$ building units, that run parallel to the *c* axis, and tenfold coordinated Tb³⁺ which link the borate chains to give a three-dimensional framework.

Received 11 April 2003 Accepted 30 April 2003 Online 9 May 2003

Comment

Among the binary rare earth oxoborates of the general composition REB_3O_6 only the compounds LaB_3O_6 (Ysker & Hoffmann, 1970; Abdullaev *et al.*, 1981), NdB₃O₆ (Pakhomov *et al.*, 1972), SmB₃O₆ and GdB₃O₆ (Abdullaev *et al.*, 1975) are fully structurally characterized. They form an isostructural series and crystallize in the monoclinic space group *I2/a*. For REB_3O_6 with RE = Dy-Lu, only a somewhat doubtful indication of their existence can be found in the literature (Tananaev *et al.*, 1975). In earlier works on cell parameters of TbB₃O₆ (Bambauer *et al.*, 1969, Weidelt, 1970), the compound is described as crystallizing with monoclinic symmetry, similar

Figure 1

Projection of the structure of the title compound along [100]. Tb atoms are shown as red spheres, O atoms as small blue spheres; $[BO_4]$ groups (olive) and $[BO_3]$ (green) are represented as polyhedra.

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

inorganic papers

to REB_3O_6 with RE = La-Gd, while a later structural analysis on single crystals of TbB₃O₆ reveals an orthorhombic symmetry (*Pbnm* or $Pbn2_1$) of the compound (Pakhomov *et* al., 1971). Very recently the crystal structure of orthorhombic TbB_3O_6 has been solved by Nikelski & Schleid (2003); the results of our own structure determination of the orthorhombic structure of TbB₃O₆ are in good agreement with the data of these authors. Orthorhombic TbB₃O₆ crystallizes in space group *Pnma* (No. 62); a = 15.9770(7) Å, b =7.4136 (3) Å, c = 12.2905 (6) Å and Z = 16.

During our systematic investigations of the crystal chemistry and crystal-growth conditions of binary rare earth borates, methods of synthesis from ternary systems were established that led to single crystals of REB_3O_6 with RE =La-Tb. Depending on the composition of the ternary system used, orthorhombic as well as monoclinic crystals of TbB₃O₆ were grown. The crystal structure of the monoclinic modification of TbB₃O₆ is presented here for the first time. Monoclinic TbB₃O₆ is isostructural with REB_3O_6 with RE = La, Nd, Sm and Gd, and crystallizes in space group I2/a (No. 15). The structure consists of infinite chains of $[B_6O_{12}]_n^{6-}$ running along the c axis. Tenfold coordinated Tb atoms link the borate chains to give a three-dimensional framework. The complex borate polyanion (4D2T:D<DTDT>D; Becker, 2001) is composed of [BO₄] tetrahedra that are linked *via* two [BO₃] triangles to the adjacent [BO₄] tetrahedra on both sides. Each [BO₃] is connected to two [BO₄], and the bridging O atoms belong also to the coordination polyhedron of one Tb. Each of the nonbridging O atoms of the [BO₃] groups coordinates to two Tb atoms. The irregular [TbO₁₀] coordination polyhedra are connected via edges to form infinite chains along the c axis.

The mean B–O distances of 1.370 Å for [BO₃] and 1.465 Å for [BO₄] fit well into the range of B–O distances found for many other borate structures [see, for comparison, Zobetz (1982) and Zobetz (1990)]. However, the [BO₃] triangles are substantially distorted, with a B-O distance of non-bridging atoms O2 that is significantly shorter than the B-O distances of bridging atoms O1 and O3 (see Table 1).

According to the results of structural investigations of TbB_3O_6 , the compound seems to play the role of a transient point within the series of REB_3O_6 with RE = La-Lu. TbB₃O₆ shows a structural flexibility that allows it to be on one hand the terminal member of the isostructural monoclinic series of REB_3O_6 with RE = La-Tb, but probably also the starting point of an assumed orthorhombic series for the smaller lanthanides Dy-Lu, that still has to be synthesized.

This structural variability of TbB₃O₆ is further corroborated by a structural phase transition at about 143 K that was recently discovered in our group.

Experimental

Crystals of monoclinic TbB₃O₆ were grown in the ternary system Tb₂O₃-B₂O₃-PbO. A homogenized powder mixture of Tb₄O₇ (99.9%, Alfa Aesar), H₃BO₃ (99.8%, Merck) and PbO (99%, Riedel de Haën), in a mol% ratio of 1.1:87.9:11.0, was heated in a covered platinum crucible to 1213 K and subsequently cooled at a rate of

Figure 2

ORTEPIII projection (Burnett & Johnson, 1996) of the title compound, with the atom-numbering scheme (projection along [100]). Atoms are drawn as 50% probability ellipsoids.

about 3.4 K h⁻¹ to 943 K. Transparent single crystals of the title compound were separated from the lead borate flux using hot dilute HCl.

Crystal data

TbB ₃ O ₆	$D_x = 4.910 \text{ Mg m}^{-3}$	
$M_r = 287.35$	Mo $K\alpha$ radiation	
Monoclinic, I2/a	Cell parameters from 25	
a = 6.2147 (4) Å	reflections	
b = 8.0225(5) Å	$\theta = 12.3 - 19.1^{\circ}$	
c = 7.8111 (7) Å	$\mu = 18.13 \text{ mm}^{-1}$	
$\beta = 93.44 (1)^{\circ}$	T = 293 (2) K	
V = 388.74 (5) Å ³	Parallelepiped, colourless	
Z = 4	$0.15 \times 0.13 \times 0.11 \text{ mm}$	
Data collection		
Nonius MACH3 diffractometer	$R_{\rm int} = 0.094$	
$\omega/2\theta$ scans	$\theta_{\rm max} = 44.9^{\circ}$	
Absorption correction: ψ scan	$h = -12 \rightarrow 12$	
MolEN (Fair, 1990)	$k = -15 \rightarrow 15$	
$T_{\min} = 0.082, \ T_{\max} = 0.136$	$l = -15 \rightarrow 15$	
5729 measured reflections	3 standard reflections	
1602 independent reflections	frequency: 60 min	
1321 reflections with $I > 2\sigma(I)$	intensity decay: 4.5%	
Refinement		
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0215P)^2]$	
$R[F^2 > 2\sigma(F^2)] = 0.036$	+ 2.4096P]	
$wR(F^2) = 0.082$	where $P = (F_o^2 + 2F_c^2)/3$	
S = 1.07	$(\Delta/\sigma)_{\rm max} < 0.001$	
1602 reflections	$\Delta \rho_{\rm max} = 2.91 \text{ e } \text{\AA}^{-3}$	
48 parameters	$\Delta \rho_{\rm min} = -2.45 \text{ e } \text{\AA}^{-3}$	

Extinction correction: SHELXL97 Extinction coefficient: 0.0023 (4)

Table 1

Selected geometric parameters (Å).

Гb1—O2 ⁱ	2.323 (3)	B1-O1	1.414 (5)
Гb1—O3 ⁱⁱ	2.460 (3)	B1-O2	1.311 (6)
Гb1-О2	2.477 (3)	B1-O3	1.385 (5)
Гb1—O1 ⁱⁱⁱ	2.485 (3)	B2-O3 ^{iv}	1.440 (5)
Гb1—О1	2.823 (4)	B2-O1	1.489 (6)

Symmetry codes: (i) $x, \frac{3}{2} - y, \frac{1}{2} + z$; (ii) $\frac{1}{2} + x, \frac{1}{2} + y, \frac{1}{2} + z$; (iii) 1 - x, 1 - y, 1 - z; (iv) $x, \frac{1}{2} - y, \frac{1}{2} + z.$

The highest peak and deepest hole are located 0.61 and 0.97 Å, respectively, from Tb1.

Data collection: *MACH3* (Enraf–Nonius, 1993); cell refinement: *MACH3*; data reduction: *MolEN* (Fair, 1990); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ATOMS* (Dowty, 2002) and *ORTEP*III (Burnett & Johnson, 1996); software used to prepare material for publication: *SHELXL97*.

References

- Abdullaev, G. K., Mamedov, Kh. S. & Dzhafarov, G. G. (1975). Sov. Phys. Crystallogr. 20, 161–163.
- Abdullaev, G. K., Mamedov, Kh. S. & Dzhafarov, G. G. (1981). Sov. Phys. Crystallogr. 26, 473–474.
- Bambauer, H. U., Weidelt, J. & Ysker, J. St (1969). Z. Kristallogr. 130, 207–213. Becker, P. (2001). Z. Kristallogr. 216, 523–533.

- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Dowty, E. (2002). ATOMS. Version 6.0. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
- Enraf-Nonius (1993). MACH3 Server Software. OpenVMS version. Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
- Nikelski, T. & Schleid, T. (2003). Z. Anorg. Allg. Chem. In the press.
- Pakhomov, V. I., Sil'nitskaya, G. B. & Dzhurinskii, B. F. (1971). Inorg. Mater. 7, 476–477.
- Pakhomov, V. I., Sil'nitskaya, G. B., Medvedev, A. V. & Dzhurinskii, B. F. (1972). *Inorg. Mater.* 8, 1107–1110.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Tananaev, I. V., Dzhurinskii, B. F. & Chistova, V. I. (1975). Inorg. Mater. 11, 69– 72.
- Weidelt, J. (1970). Z. Anorg. Allg. Chem. 374, 26-34.
- Ysker, J. St & Hoffmann, W. (1970). Naturwissenschaften, 57, 129-130.
- Zobetz, E. (1982). Z. Kristallogr. 160, 81-92.
- Zobetz, E. (1990). Z. Kristallogr. 191, 45-57.